3.6.50 \(\int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx\) [550]

Optimal. Leaf size=155 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{5/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{5/2} d}+\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}} \]

[Out]

-arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(5/2)/d-arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(
a+I*b)^(5/2)/d+2*(a^2-b^2)/(a^2+b^2)^2/d/(a+b*tan(d*x+c))^(1/2)+2/3*a/(a^2+b^2)/d/(a+b*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3610, 3620, 3618, 65, 214} \begin {gather*} \frac {2 a}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{d \left (a^2+b^2\right )^2 \sqrt {a+b \tan (c+d x)}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{5/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/((a - I*b)^(5/2)*d)) - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt
[a + I*b]]/((a + I*b)^(5/2)*d) + (2*a)/(3*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + (2*(a^2 - b^2))/((a^2 +
b^2)^2*d*Sqrt[a + b*Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx &=\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {\int \frac {b+a \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx}{a^2+b^2}\\ &=\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{\left (a^2+b^2\right )^2}\\ &=\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}-\frac {i \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a-i b)^2}+\frac {i \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a+i b)^2}\\ &=\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b)^2 d}+\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b)^2 d}\\ &=\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {i \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a-i b)^2 b d}-\frac {i \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a+i b)^2 b d}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{5/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{5/2} d}+\frac {2 a}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2-b^2\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.16, size = 103, normalized size = 0.66 \begin {gather*} \frac {(a+i b) \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};\frac {a+b \tan (c+d x)}{a-i b}\right )+(a-i b) \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};\frac {a+b \tan (c+d x)}{a+i b}\right )}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

((a + I*b)*Hypergeometric2F1[-3/2, 1, -1/2, (a + b*Tan[c + d*x])/(a - I*b)] + (a - I*b)*Hypergeometric2F1[-3/2
, 1, -1/2, (a + b*Tan[c + d*x])/(a + I*b)])/(3*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(952\) vs. \(2(133)=266\).
time = 0.13, size = 953, normalized size = 6.15

method result size
derivativedivides \(\frac {\frac {\frac {\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (-2 a^{5}+4 a^{3} b^{2}+6 a \,b^{4}-\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{2 \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}+\frac {-\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (-b \tan \left (d x +c \right )-a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (2 a^{5}-4 a^{3} b^{2}-6 a \,b^{4}+\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {-2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{2 \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}}{\left (a^{2}+b^{2}\right )^{2}}-\frac {2 \left (-a^{2}+b^{2}\right )}{\left (a^{2}+b^{2}\right )^{2} \sqrt {a +b \tan \left (d x +c \right )}}+\frac {2 a}{3 \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}}{d}\) \(953\)
default \(\frac {\frac {\frac {\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (-2 a^{5}+4 a^{3} b^{2}+6 a \,b^{4}-\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{2 \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}+\frac {-\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (-b \tan \left (d x +c \right )-a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (2 a^{5}-4 a^{3} b^{2}-6 a \,b^{4}+\frac {\left (2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-3 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}-2 \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{2} b^{2}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {-2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{2 \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}}{\left (a^{2}+b^{2}\right )^{2}}-\frac {2 \left (-a^{2}+b^{2}\right )}{\left (a^{2}+b^{2}\right )^{2} \sqrt {a +b \tan \left (d x +c \right )}}+\frac {2 a}{3 \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}}{d}\) \(953\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(2/(a^2+b^2)^2*(1/4/(a^2+b^2)^(3/2)*(1/2*(2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+2*(2*(a^2+b^
2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a*b^2-3*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*
a^2*b^2+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*b^4)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1
/2)+(a^2+b^2)^(1/2))+2*(-2*a^5+4*a^3*b^2+6*a*b^4-1/2*(2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+2*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a*b^2-3*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-2*(2*(a^2+b^2)^(1/2)+2*a
)^(1/2)*a^2*b^2+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*b^4)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2
)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))+1/4/(a^2+b^2
)^(3/2)*(-1/2*(2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(
1/2)*a*b^2-3*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2*b^2+(2*(a^2+b^2)^(1/2)+2*a)
^(1/2)*b^4)*ln(-b*tan(d*x+c)-a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-(a^2+b^2)^(1/2))+2*(2*a^5-
4*a^3*b^2-6*a*b^4+1/2*(2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^
2+b^2)^(1/2)*a*b^2-3*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2*b^2+(2*(a^2+b^2)^(1
/2)+2*a)^(1/2)*b^4)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((-2*(a+b*tan(d*x+c))^(
1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))))-2/(a^2+b^2)^2*(-a^2+b^2)/(a+b*tan(d*x+c))
^(1/2)+2/3*a/(a^2+b^2)/(a+b*tan(d*x+c))^(3/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 9790 vs. \(2 (129) = 258\).
time = 1.84, size = 9790, normalized size = 63.16 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/12*(12*sqrt(2)*((a^18 + a^16*b^2 - 20*a^14*b^4 - 84*a^12*b^6 - 154*a^10*b^8 - 154*a^8*b^10 - 84*a^6*b^12 - 2
0*a^4*b^14 + a^2*b^16 + b^18)*d^5*cos(d*x + c)^4 + 2*(3*a^16*b^2 + 20*a^14*b^4 + 56*a^12*b^6 + 84*a^10*b^8 + 7
0*a^8*b^10 + 28*a^6*b^12 - 4*a^2*b^16 - b^18)*d^5*cos(d*x + c)^2 + (a^14*b^4 + 7*a^12*b^6 + 21*a^10*b^8 + 35*a
^8*b^10 + 35*a^6*b^12 + 21*a^4*b^14 + 7*a^2*b^16 + b^18)*d^5 + 4*((a^17*b + 6*a^15*b^3 + 14*a^13*b^5 + 14*a^11
*b^7 - 14*a^7*b^11 - 14*a^5*b^13 - 6*a^3*b^15 - a*b^17)*d^5*cos(d*x + c)^3 + (a^15*b^3 + 7*a^13*b^5 + 21*a^11*
b^7 + 35*a^9*b^9 + 35*a^7*b^11 + 21*a^5*b^13 + 7*a^3*b^15 + a*b^17)*d^5*cos(d*x + c))*sin(d*x + c))*sqrt((a^10
 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^15 - 5*a^13*b^2 - 35*a^11*b^4 - 65*a^9*b^6 - 45
*a^7*b^8 + a^5*b^10 + 15*a^3*b^12 + 5*a*b^14)*d^2*sqrt(1/((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*
b^8 + b^10)*d^4)))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt((25*a^8*b^2 - 100*a^6*b^
4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/((a^20 + 10*a^18*b^2 + 45*a^16*b^4 + 120*a^14*b^6 + 210*a^12*b^8 + 252*a^
10*b^10 + 210*a^8*b^12 + 120*a^6*b^14 + 45*a^4*b^16 + 10*a^2*b^18 + b^20)*d^4))*(1/((a^10 + 5*a^8*b^2 + 10*a^6
*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4))^(3/4)*arctan(((5*a^20 + 30*a^18*b^2 + 61*a^16*b^4 + 8*a^14*b^6 - 1
82*a^12*b^8 - 364*a^10*b^10 - 350*a^8*b^12 - 184*a^6*b^14 - 47*a^4*b^16 - 2*a^2*b^18 + b^20)*d^4*sqrt((25*a^8*
b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/((a^20 + 10*a^18*b^2 + 45*a^16*b^4 + 120*a^14*b^6 + 210*a
^12*b^8 + 252*a^10*b^10 + 210*a^8*b^12 + 120*a^6*b^14 + 45*a^4*b^16 + 10*a^2*b^18 + b^20)*d^4))*sqrt(1/((a^10
+ 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4)) + (5*a^15 + 15*a^13*b^2 + a^11*b^4 - 45*a^9*b^
6 - 65*a^7*b^8 - 35*a^5*b^10 - 5*a^3*b^12 + a*b^14)*d^2*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*
b^8 + b^10)/((a^20 + 10*a^18*b^2 + 45*a^16*b^4 + 120*a^14*b^6 + 210*a^12*b^8 + 252*a^10*b^10 + 210*a^8*b^12 +
120*a^6*b^14 + 45*a^4*b^16 + 10*a^2*b^18 + b^20)*d^4)) - sqrt(2)*((a^23 + 7*a^21*b^2 + 15*a^19*b^4 - 15*a^17*b
^6 - 150*a^15*b^8 - 378*a^13*b^10 - 546*a^11*b^12 - 510*a^9*b^14 - 315*a^7*b^16 - 125*a^5*b^18 - 29*a^3*b^20 -
 3*a*b^22)*d^7*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/((a^20 + 10*a^18*b^2 + 45*a^1
6*b^4 + 120*a^14*b^6 + 210*a^12*b^8 + 252*a^10*b^10 + 210*a^8*b^12 + 120*a^6*b^14 + 45*a^4*b^16 + 10*a^2*b^18
+ b^20)*d^4))*sqrt(1/((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4)) + (a^18 + 7*a^16*b
^2 + 20*a^14*b^4 + 28*a^12*b^6 + 14*a^10*b^8 - 14*a^8*b^10 - 28*a^6*b^12 - 20*a^4*b^14 - 7*a^2*b^16 - b^18)*d^
5*sqrt((25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/((a^20 + 10*a^18*b^2 + 45*a^16*b^4 + 120*a
^14*b^6 + 210*a^12*b^8 + 252*a^10*b^10 + 210*a^8*b^12 + 120*a^6*b^14 + 45*a^4*b^16 + 10*a^2*b^18 + b^20)*d^4))
)*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10 - (a^15 - 5*a^13*b^2 - 35*a^11*b^4 - 65*
a^9*b^6 - 45*a^7*b^8 + a^5*b^10 + 15*a^3*b^12 + 5*a*b^14)*d^2*sqrt(1/((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*
b^6 + 5*a^2*b^8 + b^10)*d^4)))/(25*a^8*b^2 - 100*a^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt(((25*a^14 -
25*a^12*b^2 - 115*a^10*b^4 + 35*a^8*b^6 + 171*a^6*b^8 + 53*a^4*b^10 - 17*a^2*b^12 + b^14)*d^2*sqrt(1/((a^10 +
5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4))*cos(d*x + c) + sqrt(2)*((25*a^16 - 50*a^14*b^2 -
 90*a^12*b^4 + 150*a^10*b^6 + 136*a^8*b^8 - 118*a^6*b^10 - 70*a^4*b^12 + 18*a^2*b^14 - b^16)*d^3*sqrt(1/((a^10
 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4))*cos(d*x + c) + (25*a^11 - 175*a^9*b^2 + 410*a
^7*b^4 - 350*a^5*b^6 + 61*a^3*b^8 - 3*a*b^10)*d*cos(d*x + c))*sqrt((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6
 + 5*a^2*b^8 + b^10 - (a^15 - 5*a^13*b^2 - 35*a^11*b^4 - 65*a^9*b^6 - 45*a^7*b^8 + a^5*b^10 + 15*a^3*b^12 + 5*
a*b^14)*d^2*sqrt(1/((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4)))/(25*a^8*b^2 - 100*a
^6*b^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^10 + 5*
a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4))^(1/4) + (25*a^9 - 100*a^7*b^2 + 110*a^5*b^4 - 20*a
^3*b^6 + a*b^8)*cos(d*x + c) + (25*a^8*b - 100*a^6*b^3 + 110*a^4*b^5 - 20*a^2*b^7 + b^9)*sin(d*x + c))/cos(d*x
 + c))*(1/((a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4))^(3/4) + sqrt(2)*((5*a^27 + 25
*a^25*b^2 + 6*a^23*b^4 - 218*a^21*b^6 - 585*a^19*b^8 - 405*a^17*b^10 + 900*a^15*b^12 + 2532*a^13*b^14 + 2979*a
^11*b^16 + 2015*a^9*b^18 + 790*a^7*b^20 + 150*a^5*b^22 + a^3*b^24 - 3*a*b^26)*d^7*sqrt((25*a^8*b^2 - 100*a^6*b
^4 + 110*a^4*b^6 - 20*a^2*b^8 + b^10)/((a^20 + 10*a^18*b^2 + 45*a^16*b^4 + 120*a^14*b^6 + 210*a^12*b^8 + 252*a
^10*b^10 + 210*a^8*b^12 + 120*a^6*b^14 + 45*a^4*b^16 + 10*a^2*b^18 + b^20)*d^4))*sqrt(1/((a^10 + 5*a^8*b^2 + 1
0*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4)) + (5*a^22 + 25*a^20*b^2 + 31*a^18*b^4 - 53*a^16*b^6 - 190*a^1
4*b^8 - 182*a^12*b^10 + 14*a^10*b^12 + 166*a^8*...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))**(5/2),x)

[Out]

Integral(tan(c + d*x)/(a + b*tan(c + d*x))**(5/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 9.63, size = 2500, normalized size = 16.13 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)/(a + b*tan(c + d*x))^(5/2),x)

[Out]

atan(((((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(48*a
*b^20*d^4 - ((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*
(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a
^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4
*d^5 + 64*a^21*b^2*d^5))/4 + 368*a^3*b^18*d^4 + 1216*a^5*b^16*d^4 + 2240*a^7*b^14*d^4 + 2464*a^9*b^12*d^4 + 15
68*a^11*b^10*d^4 + 448*a^13*b^8*d^4 - 64*a^15*b^6*d^4 - 80*a^17*b^4*d^4 - 16*a^19*b^2*d^4))/2 - ((a + b*tan(c
+ d*x))^(1/2)*(320*a^4*b^14*d^3 - 16*b^18*d^3 + 1024*a^6*b^12*d^3 + 1440*a^8*b^10*d^3 + 1024*a^10*b^8*d^3 + 32
0*a^12*b^6*d^3 - 16*a^16*b^2*d^3))/2)*(1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i
- 10*a^3*b^2*d^2))^(1/2)*1i - (((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a
^3*b^2*d^2))^(1/2)*(48*a*b^20*d^4 + ((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i -
 10*a^3*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 768
0*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^1
7*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 368*a^3*b^18*d^4 + 1216*a^5*b^16*d^4 + 2240*a^7*b^14*d^4
+ 2464*a^9*b^12*d^4 + 1568*a^11*b^10*d^4 + 448*a^13*b^8*d^4 - 64*a^15*b^6*d^4 - 80*a^17*b^4*d^4 - 16*a^19*b^2*
d^4))/2 + ((a + b*tan(c + d*x))^(1/2)*(320*a^4*b^14*d^3 - 16*b^18*d^3 + 1024*a^6*b^12*d^3 + 1440*a^8*b^10*d^3
+ 1024*a^10*b^8*d^3 + 320*a^12*b^6*d^3 - 16*a^16*b^2*d^3))/2)*(1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d
^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*1i)/((((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i
+ a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(48*a*b^20*d^4 - ((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^
2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 +
 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680
*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 368*a^3*b^18*d^4 + 1216*a^5*b^16*
d^4 + 2240*a^7*b^14*d^4 + 2464*a^9*b^12*d^4 + 1568*a^11*b^10*d^4 + 448*a^13*b^8*d^4 - 64*a^15*b^6*d^4 - 80*a^1
7*b^4*d^4 - 16*a^19*b^2*d^4))/2 - ((a + b*tan(c + d*x))^(1/2)*(320*a^4*b^14*d^3 - 16*b^18*d^3 + 1024*a^6*b^12*
d^3 + 1440*a^8*b^10*d^3 + 1024*a^10*b^8*d^3 + 320*a^12*b^6*d^3 - 16*a^16*b^2*d^3))/2)*(1/(a^5*d^2 - b^5*d^2*1i
 + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2) + (((1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^
4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(48*a*b^20*d^4 + ((1/(a^5*d^2 - b^5*d^2*1i + 5
*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5
 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440
*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 368*a^3*b^18
*d^4 + 1216*a^5*b^16*d^4 + 2240*a^7*b^14*d^4 + 2464*a^9*b^12*d^4 + 1568*a^11*b^10*d^4 + 448*a^13*b^8*d^4 - 64*
a^15*b^6*d^4 - 80*a^17*b^4*d^4 - 16*a^19*b^2*d^4))/2 + ((a + b*tan(c + d*x))^(1/2)*(320*a^4*b^14*d^3 - 16*b^18
*d^3 + 1024*a^6*b^12*d^3 + 1440*a^8*b^10*d^3 + 1024*a^10*b^8*d^3 + 320*a^12*b^6*d^3 - 16*a^16*b^2*d^3))/2)*(1/
(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1/2) - 16*b^16*d^2 -
80*a^2*b^14*d^2 - 144*a^4*b^12*d^2 - 80*a^6*b^10*d^2 + 80*a^8*b^8*d^2 + 144*a^10*b^6*d^2 + 80*a^12*b^4*d^2 + 1
6*a^14*b^2*d^2))*(1/(a^5*d^2 - b^5*d^2*1i + 5*a*b^4*d^2 - a^4*b*d^2*5i + a^2*b^3*d^2*10i - 10*a^3*b^2*d^2))^(1
/2)*1i - atan(((1i/(4*(a^5*d^2*1i - b^5*d^2 + a*b^4*d^2*5i - 5*a^4*b*d^2 + 10*a^2*b^3*d^2 - a^3*b^2*d^2*10i)))
^(1/2)*((1i/(4*(a^5*d^2*1i - b^5*d^2 + a*b^4*d^2*5i - 5*a^4*b*d^2 + 10*a^2*b^3*d^2 - a^3*b^2*d^2*10i)))^(1/2)*
(96*a*b^20*d^4 + 736*a^3*b^18*d^4 + 2432*a^5*b^16*d^4 + 4480*a^7*b^14*d^4 + 4928*a^9*b^12*d^4 + 3136*a^11*b^10
*d^4 + 896*a^13*b^8*d^4 - 128*a^15*b^6*d^4 - 160*a^17*b^4*d^4 - 32*a^19*b^2*d^4 + (1i/(4*(a^5*d^2*1i - b^5*d^2
 + a*b^4*d^2*5i - 5*a^4*b*d^2 + 10*a^2*b^3*d^2 - a^3*b^2*d^2*10i)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^2
2*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 +
13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5)) + (a + b*ta
n(c + d*x))^(1/2)*(320*a^4*b^14*d^3 - 16*b^18*d^3 + 1024*a^6*b^12*d^3 + 1440*a^8*b^10*d^3 + 1024*a^10*b^8*d^3
+ 320*a^12*b^6*d^3 - 16*a^16*b^2*d^3))*1i - (1i/(4*(a^5*d^2*1i - b^5*d^2 + a*b^4*d^2*5i - 5*a^4*b*d^2 + 10*a^2
*b^3*d^2 - a^3*b^2*d^2*10i)))^(1/2)*((1i/(4*(a^5*d^2*1i - b^5*d^2 + a*b^4*d^2*5i - 5*a^4*b*d^2 + 10*a^2*b^3*d^
2 - a^3*b^2*d^2*10i)))^(1/2)*(96*a*b^20*d^4 + 7...

________________________________________________________________________________________